
Abstract—Task-specific practice can be beneficial for motor 
rehabilitation after neurological injury. Unfortunately, high 
labor demands have limited its clinical acceptance, especially 
for gait rehabilitation. A number of research teams around the 
world are testing large robotic devices for assisting treadmill 
stepping as a means for reducing therapist labor. We propose 
that powered lower limb orthoses may also have a role in 
assisting gait rehabilitation. Powered orthoses could assist task 
specific practice of gait with the long-term goal of improving 
patients’ inherent locomotor capabilities. We present data 
showing that: (1) pneumatically powered lower limb orthoses 
can provide substantial mechanical assistance to human 
walking, (2) powered orthoses can lead to motor adaptation of 
gait in healthy subjects, and (3) powered lower limb orthoses 
may have positive benefits during gait rehabilitation. 

I. INTRODUCTION

Locomotor training can improve human walking ability 

following neurological injury [1-5]. Typically locomotor 
training involves patients practicing stepping with 
bodyweight support and external assistance as needed [6]. 
This therapy was developed based on two major principles 
learned from extensive studies on cats [7-11] and rats [12]. 
The first principle, task specificity (as applied to locomotor 
training), states that to improve walking ability patients must 
practice walking [11]. The second principle, activity-
dependent plasticity, states that patients must be active 
participants in the therapy to drive neural adaptation [13, 
14]. The functional benefits of locomotor training with 
manual assistance are considerable but so are the costs. 
Providing proper manual assistance is physically demanding 
and requires a high level of skill and training.  Because it is 
labor intensive, a session of locomotor training with manual 
assistance can require several therapists. In addition the skill 
of the therapist is a very important factor in determining the 
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efficacy of the therapy.
Because of the drawbacks to manual locomotor training, 

scientists and engineers are developing robotic devices that 
can assist gait rehabilitation. Most of the currently available 
devices are designed to guide the legs through pre-
programmed physiological gait patterns. The Lokomat® 
System developed by Hocoma (Switzerland) consists of a 
position controlled robotic gait orthosis that attaches to a 
treadmill frame and a body weight support system [15-18]. 
The AutoAmbulator® [www.autoambulator.com] is a 
similar device being developed by HealthSouth, a 
commercial healthcare provider. The Mechanized Gait 
Trainer is based on a crank and rocker gear system, 
providing limb motion similar to that of an elliptical trainer 
[19, 20]. Reinkensmeyer et al. are also working on devices 
that use pneumatic actuators and high bandwidth force 
control [21, 22]. All of these robotic devices clearly have 
potential for assisting gait rehabilitation after neurological 
injury, especially for patients with little to no walking 
ability. However, for patients with some but limited walking 
ability, it may also be helpful to consider other 
complementary devices.  

An alternative approach for robotic gait rehabilitation 
devices is to make them wearable so that they can function 
during overground locomotion. This would allow the 
practice of task specific aspects of walking such as gait 
initiation and termination, turning, negotiating slopes, 
dynamic balance control and speed modulation. In addition, 
it may prove particularly helpful to provide powered plantar 
flexion during gait practice. In healthy subjects, the ankle 
joint contributes more mechanical work to the gait cycle 
than either the hip or the knee [23]. A powered lower limb 
orthosis could mechanically assist at the ankle joint while 
allowing subjects more freedom in their gait pattern during 
rehabilitation. A powered orthosis might be especially useful 
for patients who are ready to practice more demanding 
locomotor tasks like turning and obstacle avoidance. 

Although lower limb orthoses have traditionally been 
passive, there have been attempts at providing powered 
versions. Importantly, the main goal of these previous 
prototypes has been to create assistive technology. These 
research teams envisioned replacing lost motor capabilities 
rather than improving motor capabilities through therapy. In 
the 1970s, Vukobratovic built pneumatic robotic 
exoskeletons for human walking [24, 25]. Seireg et al. 
developed a hydraulic device with a dual axis hip, dual axis 
ankles, and a single axis knee joint [26]. A more recent 
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attempt was the Powered Gait Orthosis (PGO), a four bar 
linkage and CAM system [27]. Blaya et al. built an orthosis 
to assist drop foot gait [28]. In addition, there are other 
groups developing powered lower limb orthoses to replace 
lost motor function of patients [29, 30]. All of these 
prototypes have had difficulty with achieving sufficient 
energy density. That is, to make the devices truly portable so 
they can function as assistive technology, the actuators and 
batteries have to be powerful and lightweight while 
providing many hours of use. 

Powered orthoses for motor rehabilitation do not face as 
many technical difficulties as those intended for use as 
assistive technology. Using a powered lower limb orthosis 
as gait therapy would restrict the device to the clinic. As a 
result, control hardware and power do not have to be on 
board the orthosis itself. Electric, hydraulic, or pneumatic 
energy could be supplied through a tether that includes 
cables connected to a desktop computer. A therapist could 
have real-time control over the magnitude and timing of 
mechanical assistance during gait practice. In addition, 
sensors could provide feedback to the therapist about the 
performance of the patient. As rehabilitation progresses, the 
patient could be weaned by decreasing orthosis assistance.  
This would enforce active patient participation over the 
training period. The ultimate goal would be to divorce the 
patient from the powered orthosis as motor capabilities 
improved. 

The following sections describe our initial attempts at 
developing powered orthoses for motor rehabilitation and 
discuss alternative uses for the orthoses in studying motor 
adaptation during human walking. 

II. DESIGN  
We have constructed orthoses capable of providing 

mechanical assistance at the ankle and knee [31-33] (Figure 
1). They are comfortable, lightweight and allow 
unencumbered movement through a normal range of motion 
during walking. The orthoses are custom built for each 
subject from a combination of carbon fiber and 
polypropylene. Steel hinge joints allow sagittal plane 
movements at ankle and knee joints. The design of the 
ankle-foot orthoses have been described in detail previously 
[33-35]. 

Artificial pneumatic muscles attached to the orthoses 
provide flexion and extension torque at individual joints. 
Artificial pneumatic muscles can provide high power 
outputs, are relatively light-weight, and possess inherent 
compliance [36-39]. The artificial muscle consists of an 
expandable internal bladder housed inside a braided 
polyester shell. When the bladder is inflated, the braided 
shell constrains its expansion. As the volume of the internal 
bladder increases with greater air pressure, the pneumatic 
muscle shortens and/or produces tension if coupled to a 
mechanical load. The mechanical properties of artificial 
pneumatic muscles have been described in detail elsewhere 

[40-42]. We have utilized several different signals 
(footswitch, proportional myoelectric, push button, etc.) to 
control artificial pneumatic muscle activation during 
locomotion.   

III. PRELIMINARY STUDIES 
A. Footswitch-Controlled Unilateral Ankle-Foot 
Orthosis

The goal of this first study was to quantify the mechanical 
performance of a powered ankle-foot orthosis that provided 
plantar flexor assistance during human walking. We placed 
our initial emphasis on this orthosis because ankle plantar 
flexor power dominates the mechanical work required for 
walking [23]. We examined three healthy subjects as they 
walked over a range of speeds. The artificial plantar flexor 
muscle was activated by a foot switch controller. When the 
subject’s forefoot contacted the ground, the artificial muscle 
contracted maximally. When the subject’s forefoot lost 
ground contact at toe-off, the artificial muscle relaxed 
completely. We used this simple bang-bang controller to 
quantify orthosis performance in a situation that limited 
effects of motor adaptation by the subject.  

We found that net ankle moments during walking were 
similar when the subjects walked with the orthosis active 
and passive (i.e. artificial pneumatic muscles were inactive). 
When the artificial pneumatic muscles were active, the 
orthosis generated ~57% of the peak ankle plantar flexor 
torque during stance (Figure 2) and performed ~70% of the 
plantar flexor positive work done during normal walking 
[30]. The results of this study demonstrated that our orthosis 
was able to create substantial plantar flexor torque and 

Figure 1. ABOVE LEFT: An ankle-foot orthosis with 
an artificial pneumatic plantar flexor muscle. ABOVE 
RIGHT: A knee-ankle-foot orthosis with artificial 
pneumatic muscles providing flexion and extension 
torque at each joint. Plastic tubes provide compressed 
air to the artificial muscles from an external air source. 
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performed considerable work during human walking by 
neurologically intact subjects.  

B. EMG-Controlled Unilateral Ankle-Foot Orthosis 
Based on the performance of the ankle-foot orthosis with 

footswitch control, we felt that the orthosis might also be 
helpful in studying motor adaptation in healthy subjects. 
Using proportional myoelectric control, we were able to 
activate the artificial pneumatic plantar flexor based on the 
amplitude of a subject’s soleus electromyography (EMG). 
This effectively amplified torque production of soleus 
activation. Six subjects walked at 1.25 m/s for thirty minutes 
with the ankle-foot orthosis active.  

Initially subjects were not able to fluidly control the 
supplemental plantar flexor torque. Subjects walked on their 
toes for the first several minutes (Figure 3). Soleus EMG 
during these first few minutes was active throughout the gait 
cycle, resulting in accompanying artificial plantar flexor 
torque. During thirty minutes of walking with the active 
orthosis, subjects gradually returned to kinematic patterns 
similar to normal. This was accomplished by modulating 
soleus muscle activity. Soleus EMG amplitude was reduced 
by about 50% and became timed to occur just prior to toe 
off. Results from this study demonstrated that subjects were 
able to selectively modulate muscle activity during walking 
in response to altered musculoskeletal mechanics. Studies of 
this nature may be helpful in elucidating general principles 
of motor control and adaptation during human locomotion. 

The findings also suggest that powered orthoses might be 
useful for shaping gait patterns in neurologically impaired 
individuals. 

C. Push Button-Controlled Bilateral Ankle-Foot 
Orthoses

We tested the ankle-foot orthoses on subjects with partial 
paralysis using a novel controller. Hand-held push buttons 
provided proportional activation of artificial plantar flexors 
on two ankle-foot orthoses (Figure 4). Elastic cords 
provided limited dorsiflexor torque to assist toe clearance. 
Six subjects with chronic incomplete spinal cord injury 
walked at 0.54 m/s under three different conditions: (1) 
without the powered orthoses, (2) with passive orthoses, and 
(3) with active orthoses under push button control by a 
therapist. In addition, three of the subjects completed an 
additional condition: (4) with active orthoses under push 
button control by the subject. A harness provided torso 
support at 30% or 50% body weight depending on the 
subject’s ability. Elastic cords increased lateral stability at 
the waist. We measured EMG, joint kinematics and orthosis 
torque assistance. Foremost, we wanted to determine if the 
added mechanical assistance of the orthosis would decrease 
neuromuscular recruitment in the soleus and gastrocnemius. 
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Figure 3. Mean step cycle data from a representative 
subject during 30 minutes of continuous walking. The 
subject was wearing a powered ankle-foot orthosis under 
proportional myoelectric control. Soleus EMG was 
activating an artificial plantar flexor muscle. Graphs 
compare data with a passive orthosis to data from the first 
and thirtieth minutes of active orthosis walking. Early in 
the trial the orthosis greatly altered joint kinematics, but 
subjects learned to incorporate the orthosis power into a 
normal gait pattern with practice. 
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Figure 2. Mean + standard deviation of net ankle 
moments and artificial pneumatic muscle moments for 
the three subjects during overground walking at 1.0 
m/s.  Plantar flexion moments are in the positive 
direction. Subjects walked with very similar net ankle 
moments for the passive and active orthosis 
conditions when using foot-swtitch control. 
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It was possible that the powered orthoses would decrease 
soleus and gastrocnemius recruitment because they 
unloaded the biological muscles during walking. If orthosis 
assistance reduces muscle activation and promotes passivity 
in the subject, it could hinder activity-dependent plasticity 
during rehabilitation. 

We found that powered plantar flexion assistance 
controlled by a therapist or by the subject did not decrease 
soleus or gastrocnemius recruitment (Figure 5). The added 
torque at the ankle joint did provide increased plantar 
flexion at the end of the stance phase however. Increased 
push-off at the end of stance may have provided more 
appropriate sensory feedback to locomotor neural networks 
because of more normal gait dynamics. The enhanced 
sensory feedback could then evoke greater muscle 
activation. Future experiments need to examine the changes 
in gait dynamics and sensory feedback in spinal cord injury 
subjects more closely.  

A few of the subjects could not use the push button 
controllers during treadmill walking. They felt it required 
too much mental concentration. The subjects that could 
complete the “patient-controlled” push button condition 
commented that it was good to have control over the 
orthoses.  

IV. FUTURE DESIGNS AND FUTURE STUDIES 
There are several modifications that could improve the 

performance of powered lower limb orthoses. We are 
currently working on an adjustable design that could fit 
multiple subjects. It may be possible to integrate other 

actuator technologies to produce higher forces and powers 
with greater control bandwidth. More advanced control 
algorithms may be able to detect the user’s intent and 
provide assistance on an ‘as needed’ basis.
 With the current design, we plan on exploring questions 
related to locomotor adaptation in both healthy and 
neurologically impaired subjects. The current ankle-foot 
orthosis presented here may be valuable in probing the 
relationship between gait mechanics and metabolic cost.  
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and push button controllers to assist locomotor 
training. 
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